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ABSTRACT 

The influence of radiated aerodynamic noise (generated by 
the tunnel wall turbulent boundary.layer) on model boundary- 
layer transition in supersonic and hypersonic wind tunnels 
was investigated.  Boundary-layer transition measurements 
were made at supersonic Mach numbers on sharp-leading-edge 
hollow-cylinder models in the AEDC-VKF 12-in. Tunnel D, the 
40-in. Tunnel A, and the AEDC-PWT 16-ft Supersonic Tunnel. 
These data showed, conclusively, a significant and continuous 
increase in transition Reynolds number with increasing tunnel 
size.  Results from a shroud configuration placed concentri- 
cally around a hollow-cylinder transition model in the AEDC- 
VKF Tunnel A demonstrated a significant change in the magnitude 
and trend in transition Reynolds number with unit Reynolds 
number, as compared to transition Reynolds numbers without the 
shroud, when the boundary layer on the shroud inner wall 
changed from a laminar to turbulent boundary layer.  A flat- 
plate model equipped with a microphone confirmed that a signi- 
ficant increase in the root-mean-square (RMS) radiated pres- 
sure fluctuations accompanied the decrease in the transition 
Reynolds numbers between the AEDC-VKF 40-in. and 12-in. tun- 
nels and the decrease in transition as the shroud inner wall 
boundary layer changed from laminar to turbulent.  From 
transition data obtained in these investigations, previously 
published data from the AEDC-VKF Tunnels A and D, and data 
from six other wind tunnels, a correlation of transition 
Reynolds numbers was developed.  The correlation was based on 
zero bluntness, flat-plate and hollow-cylinder transition 
data which covered a Mach number range from 3 to 8 and unit 
Reynolds number range from 0.05 x 10° to 1.1 x 10^ per inch. 
The correlation was found to be dependent only on the tunnel 
wall, turbulent boundary-layer, aerodynamic noise parameters 
(displacement thickness and skin friction) and the tunnel 
test-section circumference. 
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SECTION I 
INTRODUCTION 

The conditions which have an influence on transition 
from laminar to turbulent flow are of considerable importance 
because of the far-reaching influence boundary-layer flow has 
on vehicle performance.  Although the subject of boundary- 
layer transition has received considerable attention during 
the past fifteen years, there has been a renewal of interest 
in the subject in the past several years because of its influ- 
ence on various aspects of re-entry vehicle performance. 

Extensive testing programs have been conducted in wind 
tunnels and account for the bulk of the information on transi- 
tion at supersonic, hypersonic, and hypervelocity speeds. 
Aeroballistic ranges have also been used in transition studies, 
and some flight tests have been conducted to provide transi- 
tion data; however, they generally account for the smallest 
percentage of the results. 

There have been some successes in theoretically pre- 
dicting boundary-layer instability; however, little progress 
has been made toward theoretically predicting the location of 
transition. Explanations of the behavior of transition results 
obtained from wind-tunnel measurements, and predictions of the 
transition location at supersonic and hypersonic speeds have 
usually been attempted through the use of data correlations 
with the assumption that the tunnel free-stream disturbances 
are unimportant at high supersonic and hypersonic speeds. 

Experience in subsonic tunnels showed that transition 
results were critically dependent on the quality of flow and, 
therefore, were different from one wind tunnel to another. 
Similar disagreement was found in transition results measured 
at low supersonic speeds in different wind tunnels and indi- 
cated that studies were necessary to ascertain whether the 
results were affected by tunnel disturbances.  In the early 
fifties, the NACA initiated comparative transition tests with 
zero heat transfer on a 10-deg cone in many of its supersonic 
facilities (Ref. 1).  These tests, made under comparable con- 
ditions in tunnels of various sizes, showed a wide range of 
transition Reynolds numbers which decreased as the Mach 
number was increased up to about four.  The significant 
scatter of the transition Reynolds number was believed to be 
caused by free-stream disturbances of various degrees present 
in the different wind tunnels. 

Kovasznay (Ref. 2) found that the disturbances in wind- 
tunnel flows may be of three types: (a) vorticity fluctuations 
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(turbulence), (b) entropy fluctuations (temperature spotti- 
ness), and (c) sound waves. 

The vorticity and entropy fluctuations are essentially 
convected along streamlines and are traceable to conditions 
in the settling chamber. The sound disturbances can travel 
across streamlines, and they may originate in the stilling 
chamber and from the boundaries of the test section (Ref. 3). 

The vorticity (turbulence) fluctuations were investi- 
gated at Mach numbers from 1.7 to 4 by Laufer (Ref. 4) by 
varying the turbulence level in the stilling chamber from 
0.6 to 7 percent.  In the low Mach number flow, M^, < 2.5, 
the stilling chamber turbulence level was found to have a 
strong effect on the boundary-layer transition Reynolds 
number; however, no significant effect was noted for M^ > 2.5. 
Similar experiments were conducted at Mach 1.76 by Morkovin 
(Ref. 5), and no measurable shift in transition resulted when 
the settling chamber turbulence was raised from 0.7 to 4.6 
percent. 

Sources of the entropy fluctuations (temperature spotti- 
ness) are traceable to the settling chamber and farther up- 
stream.  In the test section, the temperature fluctuations 
are related isentropically to those in the stilling chamber. 
Effective means such as the use of mixing sections and screens 
in the supply passage are used to reduce the fluctuations to 
small levels in supersonic tunnels where their influence on 
transition is thought to be insignificant. 

The third type of unsteady disturbances, the sound 
fluctuations (Ref. 3) generated by the turbulent boundary 
layer on the walls of the test section, remain as a possible 
major factor affecting transition in supersonic and hyper- 
sonic wind tunnels (Mra > 2.5).  Sound energy generated along 
the walls is predominantly radiated in the general direction 
of the free-stream Mach waves even though individual wave 
fronts may be inclined at different angles if the sound 
sources are moving with respect to the free-stream flow and 
solid boundary (Refs. 3 and 6). 

Laufer (Ref. 7) conducted a series of experiments at 
Mach 1.5 to 5 and showed that the fluctuating field existing 
in the wind tunnel was a sound field with an intensity which 
increases rapidly as the Mach number is increased.  Schlieren 
photographs taken of a model in free flight revealed a sound 
field emanating from the turbulent boundary layer. The 
orientation of the sound field was found to be different from 
the Mach-wave direction and corresponded to a sound-source 
velocity of approximately one-half the free-stream velocity 
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for Mach numbers 3 to 5.  Laufer argued that the fluctuations 
picked up by a hot wire in the free stream originated from 
the boundary layers on the tunnel walls.  To confirm this, he 
shielded the hot wire from one of the walls by a flat plate, 
and he noted that the mean-square voltage fluctuation across 
the wire decreased by about 20 percent when the wire was be- 
hind the plate. 

Hot-wire experiments in the boundary layer of a Mach 
1.76 nozzle (Ref. 3) disclosed the presence of a high inten- 
sity, thin turbulent layer within the much thicker nozzle 
wall boundary layer.  Since turbulence in a low, supersonic 
boundary layer is produced largely near the wall and then 
diffused outward, the thin turbulent layer was interpreted 
as being associated with the higher shear. 

Vrebalovich, JPL, in commenting on Morkovin's paper on 
free-stream disturbances (Ref. 8) indicated that hot-wire 
measurements made in the test section of the JPL tunnels 
showed that when the wall boundary-layer was turbulent the 
free-stream mass flow fluctuations not only increased with 
Mach number but were higher at the lower unit Reynolds number. 
From experiments in the JPL 12-in. supersonic tunnel with 
laminar, transitional, and fully turbulent boundary-layer 
flow on the tunnel wall, the following results were obtained: 
(a) free-stream pressure fluctuation levels were smallest 
when the boundary-layer was laminar and (b) tripping the 
boundary layer introduced less fluctuations in the free stream 
than when transition from laminar to turbulent flow occurred 
naturally between the nozzle throat and test section.  These 
experiments in which the only change was in the nature of the 
tunnel wall boundary layer showed that a dominant source of 
free-stream disturbances at the higher Mach numbers was the 
aerodynamic sound radiated from the wall boundary layers. 

Phillips (Ref. 9) proposed a theory to describe the 
generation of sound by turbulence at high Mach numbers. 
Laufer (Ref. 6), in commenting on Phillips' theory, noted 
that it is based on the premise that the sound-generating 
mechanism consists of a moving, spacially random, virtually 
wavy wall formed by an eddy pattern that is convected super- 
sonically with respect to the free-stream and is consistent 
with the principal features of the sound field found in 
experiments.  Using this view, Laufer derived an expression 
for the pressure fluctuation intensity which is shown to be 
a function of the mean skin-friction coefficient, the wall 
boundary-layer thickness, lengths which scale with the 
boundary-layer thickness, convection speed, angle of the 
radia'ted disturbance, and free-stream Mach number.  This 
theory was found to be in partial agreement with experimental 
data at Mach numbers from 1.5 to 3.5 and considerably below 
experimental data at Mach 5. 
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Kistler and Chen (Ref. 10) reported on pressure fluctua- 
tion measurements that were made with microphones in a flat 
plate and in the tunnel sidewall at Mach numbers from 1.33 to 
5.00.  Laufer (Ref. 11) discussed the radiation field gener- 
ated by a supersonic turbulent boundary layer at Mach numbers 
from 1.5 to 5 and compared the hot-wire results with those 
obtained by Kistler and Chen (Ref. 10) with microphones in 
the wall of the tunnel.  In each of these tests, the wall and 
free-stream pressure fluctuations were found to scale with 
the mean wall shear for all Mach numbers.  In addition, it 
was noted that the intensity of the radiated pressure fluctua- 
tions was two orders of magnitude less than the pressure 
fluctuations on the wall.  In these experiments, Laufer also 
showed that the intensity of the radiated pressure fluctua- 
tions was proportional to the size of the test section.  For 
example, radiation from one wall was approximately equal to 
one-fourth the radiation measured from four walls. 

In 1952, AGARD established a series of calibration models 
with somewhat the same general objective as the NACA had in 
testing a 10-deg cone in several wind tunnels.  One of the 
calibration models was a high fineness ratio, parabolic body 
(AGARD Calibration Model A) which had been tested extensively 
by the NACA to compare zero lift drag measurements made in 
many different wind tunnels.  Tests of the same model in the 
Arnold Engineering Development Center, von Karmä'n Facility 
(AEDC-VKF) 12-in. and 40-in. supersonic tunnels (Gas Dynamic 
Wind Tunnels, Supersonic (D) and (A)) revealed discrepancies 
in base pressure and drag data that could be explained by 
differences in transition Reynolds numbers in these tunnels 
(Ref. 12). These tests were followed by tests of a hollow- 
cylinder model to obtain transition locations for a range of 
Mach numbers and unit Reynolds numbers.  Schueler (Ref. 13) 
showed from these tests that transition Reynolds numbers 
obtained in the AEDC-VKF 40-in. supersonic tunnel are much 
larger than those from the AEDC-VKF 12-in. supersonic tunnel 
and discussed the possibility of differences in the aero- 
dynamic noise generated in the tunnel boundary layers as 
being responsible for the variations in transition Reynolds 
numbers. 

No work, either theoretical or experimental, has shown 
the manner in which boundary-layer transition is affected by 
aerodynamic noise; however, progress to date has considerably 
enhanced the understanding of the factors which influence the 
intensity of the radiation field generated by tunnel wall 
boundary layers. The more important factors include Mach 
number, the type boundary layer, boundary-layer thickness, 
mean shear, and test-section size. 
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Using these factors as a guide, previously published 
transition Reynolds numbers obtained at Mach numbers from 3 
to 8 in eight facilities on two-dimensional models were cor- 
related as a function of the tunnel wall turbulent boundary- 
layer displacement thickness in the test section, the average 
tunnel wall turbulent skin-friction coefficient, and the test- 
section circumference. This research included an experimental 
program designed to determine the effects of radiated aero- 
dynamic noise on transition and to provide basic transition 
Reynolds number data from the AEDC-VKF 12-in. Tunnel D, 40- 
in. Tunnel A, and AEDC, Propulsion Wind Tunnel Facility (PWT) 
16-ft supersonic tunnel (Propulsion Wind Tunnel, Supersonic 
(16S)) to test the validity of the correlation proposed. 

SECTION II 
EXPERIMENTAL CONDITIONS 

2.1 WIND TUNNEL FACILITIES 

New experimental data included in this report were 
obtained in AEDC-VKF Tunnels A and D and in AEDC-PWT-16S. 

2.1.1 AEDC-PWT 16-by 16-ft Supersonic Tunnel 

Tunnel 16S is a closed-circuit, variable-density wind 
tunnel with an automatically controlled, flexible plate-type 
nozzle.  Current test capabilities include a Mach number 
range from 1.65 to 3.20 at stagnation pressures from approxi- 
mately 0.7 to 11 psia.  For these tests, the stagnation tem- 
perature was held constant at approximately 200°F.  The test 
section is 16 ft square by 40 ft long, and the transition 
model was located in the first 10 ft of the test section. 
Additional information on the tunnel may be found in Ref. 14 
and in Appendix 1. 

2.1.2 AEDC-VKF  40-by 40-in. Supersonic Tunnel A 

Tunnel A is a continuous, closed-circuit, variable- 
density wind tunnel with an automatically driven, flexible 
plate-type nozzle and a 40- by 40-in. test section. The tun- 
nel can be operated at Mach numbers from 1.5 to 6 at maximum 
stagnation pressures from 29 to 200 psia, respectively, and 
stagnation temperatures up to 300°F (M^ = 6).  Minimum op- 
erating pressures range from about one-tenth to one-twentieth 
of the maximum pressures. A description of the tunnel and 
airflow calibration information may be found in Ref. 15. 
Additional information on the Tunnel A geometry and tunnel 
wall boundary-layer characteristics can be found in Appendix 
II. 
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2.1.3   AEDC-VKF   12- by 12-in. Supersonic Tunnel D 

Tunnel D is an intermittent, variable density wind tun- 
nel with a manually adjusted, flexible plate-type nozzle and 
a 12- by 12-in. test section. The tunnel can be operated at 
Mach numbers from 1.5 to 5 at stagnation pressures from about 
5 to 60 psia and at average stagnation temperatures of about 
70°F.  A description of the tunnel and airflow calibration 
information may be found in Ref. 16. An illustration showing 
the Tunnel D geometry is presented in Fig. IV-1, Appendix IV. 

2.2 BASIC TRANSITION MODELS AND APPARATUS 

2.2.1 AEDC-PWT 

Figure 1 shows the transition model installed in the 
test section of the AEDC-PWT-16S tunnel.  The model was a 
12-in.-diam by 115-in.-long, steel hollow cylinder having an 
external surface finish of 15 microinches (p.in.).  The 
location of transition was determined from pressure data 
obtained from four equally spaced, external surface pitot 
probes (0.016- by 0.032-in. tip geometry). 

Three interchangeable, leading-edge, nose sections with 
an internal bevel angle of 6.5 deg and average leading-edge 
bluntness (b) of 0.0015, 0.0050, and 0.0090 in. were tested. 
The maximum bluntness'deviation around the leading edge was 
approximately ± 0.0005 in. 

A sliding collar arrangement which was separated from 
the model surface by eight Tefloi® inserts supported the four 
pitot probes and housed four differential pressure trans- 
ducers.  An actuating apparatus consisting of a coil spring 
and a hydraulic cylinder for compressing the spring provided 
the means for automatically positioning the pitot probes 
along the surface.  Probe pressure data were recorded at 
small intervals of probe travel at discrete model axial 
locations. 

Profiles of the boundary layer on the tunnel straight 
wall and flexible plate at the model location were measured 
with two 14-probe rakes to determine the characteristics of 
the wall turbulent boundary layer. 

Details of the model and the experimental boundary-layer 
characteristics obtained on the tunnel walls can be found in 
Figs. 1-2 and 1-3, respectively, in Appendix I. 

6 
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Fig. 1    AEDC-PWT-16S Transition Model Installation 
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2.2.2 AEDC-VKF 

A 3.0-in.-diam by 32-in.-long hollow cylinder having a 
surface finish of 15 |iin. was the transition model used in 
the-AEDC-VKF Tunnels A and D. This is the same model used 
in the previous investigations of Potter and Whitfield (Ref. 
17) and Schueler (Ref. 13).  Interchangeable nose sections 
having leading-edge, internal bevel angles of 6 and 12 deg 
and leading-edge bluntness (5) of 0.0013, 0.0021, 0.0030, and 
0.0036 in. were tested.  The maximum deviation of the nose 
bluntness was ± 0.0001 in. around the leading-edge circum- 
ference.  A remotely controlled, electrically driven, surface 
pitot probe provided a continuous trace of the probe pres- 
sure on an X-Y plotter from which the location of transition 
was determined. 

Boundary-layer profiles were measured in the AEDC-VKF 
Tunnel A on the flexible plate near the model location with 
a 23-probe pitot rake to determine the characteristics of 
the wall turbulent boundary layer. 

Additional information on the design of the AEDC-VKF 
3.0-in.-diam transition model and the experimental values of 
the AEDC-VKF Tunnel A flexible plate boundary-layer character- 
istics are presented in Figs. II--2 and II-3, respectively, in 
Appendix II. 

2.3 AEDC-VKF TUNNEL A SHROUD MODEL 

The 12-in.-diam shroud and 3.0-in.-diam, hollow-cylinder, 
transition model installation in the AEDC-VKF Tunnel A are 
shown in Fig. 2.  The steel shroud had an external, leading- 
edge bevel angle of 10-deg and a leading-edge bluntness value 
of approximately 0.007 in. with an internal surface finish of 
50 |i.in.  The shroud design was such that the weak shock waves 
emanating from the shroud leading edge did not impinge on the 
test area of the 3.0-in.-diam transition model, as illustrated 
in Fig. 2.  A 15-probe rake was used to measure the boundary- 
layer profiles on the inside shroud wall.  From these data, 
the condition of the boundary layer, whether turbulent or 
laminar, along with other boundary-layer characteristics were 
determined. 

Detailed information pertaining to the shroud design and 
the experimental test results obtained using the shroud are 
presented in Appendix III. 

8 
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Fig. 2   Long Shroud Installation in the AEDC-VKF   Tunnel A 
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SECTION III 
BASIC TRANSITION RESULTS 

Experimental transition studies were conducted in the 
AEDC-VKF Tunnels A and D and the AEDC-PWT-16S tunnel to pro- 
vide data from the largest range of wind-tunnel sizes avail- 
able and, thereby, test the validity of the proposed corre- 
lation of transition Reynolds numbers. 

Comparisons of typical pitot pressure data obtained in 
the AEDC-VKF 12-in. Tunnel D, 40-in. Tunnel A and the AEDC- 
PWT 16-ft supersonic tunnel are shown in Fig. 3 for Moo *=* 3.0. 
These data clearly show the large increase in transition loca- 
tion, and consequently transition Reynolds number (Ret), with 
increasing tunnel size and confirm the earlier results of 
Schueler (Ref. 13).  This increase in Ret with increasing tun- 
nel size is in accordance with the aerodynamic noise philosophy 
discussed in Sections I and V. 

The location of transition used in this report is defined 
as the peak in the pitot pressure profile as indicated in 
Fig. 3.  This method of transition detection is generally 
accepted as being near the end of the transition process and 
has been established as one of the more repeatable and reli- 
able methods of selecting a particular and finite location 
for transition (see Refs. 13, 17, and 18). 

Basic transition Reynolds number results from the AEDC- 
VKF Tunnels D and A and the AEDC-PWT-16S tunnel for M«, = 3.0 
are presented in Fig. 4 for the test unit Reynolds number 
range and various leading-edge geometries. The large in- 
crease in the transition Reynolds numbers with increasing 
tunnel size is again clearly shown. The AEDC-PWT transition 
data in Fig. 4 represent the average value of Ret determined 
from the four independent pitot probes. The transition 
Reynolds numbers for each probe location are tabulated in 
Appendix I. Agreement between the four sets of Ret values 
for a given test condition was good and in general agreement 
with the leading-edge thickness variation of approximately 
± 0.0005 in. around the leading-edge circumference.  The 
standard deviation of Ret determined using each individual 
probe Ret value and the mean Ret curves in Fig. 4 for 
5 = 0.0015, 0.0050, and 0.0090 in. was Ret = ± 0.011 x 10

6. 
Good agreement also existed between the AEDC-VKF Tunnels D 
and A Ret data from these experiments and the previous 
results of Potter and Whitfield (Ref. 17) and Schueler 
(Ref. 13), respectively, for b = 0.003 in. 

All of the basic transition Reynolds number data obtained 
in the AEDC-PWT-16S tunnel and the AEDC-VKF Tunnels A and D are 
tabulated and plotted in Appendixes I, II, and IV, respectively 
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Brinich in Ref. 19 reported that the effect of leading- 
edge bevel (0LE - 5 and 30 deg) on boundary-layer transition 
was negligible at M^ = 3. However, Potter and Whitfield 
(Ref. 17) correlated three sets of M«, = 3 transition data 
using the bevel angle as a parameter.  Unfortunately, the 
three sets of data were from three different wind tunnels. 
Later experiments by Whitfield and Potter (Ref. 18) at a 
Mach number of eight showed no bevel angle effect.  Therefore, 
in order to use transition data in this research from various 
sources, it was felt necessary to determine conclusively if 
the leading-edge bevel angle has an influence on transition 
at supersonic speeds. The data in Fig. 4 from the AEDC-VKF 
Tunnels A and D for bevel angles of 6 and.12 deg clearly show 
no bevel angle effect at M» - 3.  Similar results were also 
obtained at Moo = 4 and 5 in Tunnel A (see Appendix II) . 
Therefore, it was concluded that there is no leading-edge 
bevel-angle effect on transition Reynolds numbers from sharp- 
leading-edge models at supersonic and hypersonic speeds. 

SECTION IV 
SHROUD TRANSITION AND NOISE RESULTS 

Previous experiments using two concentric hollow cylin- 
ders with the outer cylinder serving as a shield to protect 
the smaller hollow cylinder from the tunnel radiated aero- 
dynamic noise were reported in Ref. 20. The idea was to 
measure the transition point on the inside of the smaller 
shroud using a pitot probe and, thereby, provide some measure 
of the effect that a radiated pressure field had on transi- 
tion.  Unfortunately, the presence of the outer cylinder 
introduced disturbances in the flow, and the results were in- 
conclusive. 

Based on the negative results of those experiments, a 
somewhat different approach was used in this investigation. 
The experimental apparatus employed to demonstrate the 
effects of radiated aerodynamic noise generated by a turbu- 
lent boundary layer consisted of a 12-in.-diam shroud model 
placed concentrically around the 3.0-in.-diam hollow cylinder 
transition model, as shown in Fig. 2 and Fig. III-l in 
Appendix III.  This design was selected primarily because it 
allowed a controlled boundary-layer environment to be main- 
tained on the.shroud inner wall upstream of the transition 
model.  Also the shroud provided some protection from the 
noise radiating from the turbulent boundary layer on the wall 
of the 40-in. Tunnel A.  The procedure was to measure the 
location of transition on the 3.0-in.-diam model as the bound- 
ary layer on the shroud inner wall upstream of the transition 
model changed from laminar to turbulent. 
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From the earlier experiments of Laufer (Refs. 7, 11, and 
20) and Morkovin (Refs. 3 and 5) it was anticipated that when 
the shroud wall boundary layer changed from laminar through 
transitional to fully turbulent then the radiated aerodynamic 
noise would increase and adversely influence the location of 
transition on the internal 3.0-in.-diam transition model. 

Experimental results from the shroud test in the AEDC- 
VKF Tunnel A are presented in Figs. 5 and 6 for M^ = 3.0 and 
5.0, respectively.  Figures 5a and 6a are sketches showing 
the location of transition on the shroud inner surface for 
various unit Reynolds numbers.  With a boundary trip in posi- 
tion 1/8-in. from the shroud leading edge, the flow was tur- 
bulent very near the trip for M^ = 3.6 and Re/in. > 0.2 x 10® 
(Fig. 5a). The effectiveness of the trip (serrated fiber 
glass tape) at Moo = 3 was determined from separate studies 
conducted in the AEDC-VKF Tunnel D, as shown in Fig. IV-4 in 
Appendix IV.  From the results shown in Fig. 6b, it was con- 
cluded that the trip was not effective at !!„, = 5.0. 

Large changes in the transition Reynolds numbers on the 
3.O-in.-diam, hollow-cylinder model (as compared to the no 
shroud case) were obtained as the shroud boundary layer up- 
stream of the 3.0-in. model was changed from laminar to tur- 
bulent by using the trip and/or by increasing the unit Rey- 
nolds number as are clearly and distinctly shown in Figs. 5b 
and 6b.  The no-shroud basic Ret data are presented for com- 
parison.  It is suggested from 5b that the decrease in the 
no-trip Ret results with increasing Re/in. values and the 
large reduction in Ret with the trip in position are directly 
related to the formation of the turbulent boundary layer on 
the inside shroud wall and the resulting generation of radi- 
ated pressure fluctuations (aerodynamic noise). 

It is of interest to note that the M^, = 5 transition 
Reynolds number results in Fig. 6b exhibited the character- 
istic decrease in Ret with a decrease in leading-edge blunt- 
ness (B) even when exposed to the intensified field of 
radiated noise. 

Static pressure measurements on the shroud inner surface 
and the 3.0-in., hollow-cylinder, external surface confirmed 
that the flow was supersonic at all times.  The impingement 
of the shroud leading-edge shock wave was downstream of the 
transition area (0 < xt < 15.5 in.), as confirmed by the sur- 
face probe pressure data and the hollow-cylinder surface 
static pressures.  The strength of the leading-edge shock was 
equivalent to approximately a 1.0-deg, two-dimensional wedge 
shock.  For example, at 11^= 3.0 the shroud static pressure 
ratios near the leading edge were on the order of p /p =1.06, 
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and the corresponding hollow-cylinder and flat-plate surface 
static pressure ratios were equal to Ps/p«, = 1.15.  Hollow- 
cylinder static pressure ratios with the shroud removed were 
equal to ps/poo ™ 1.02 at M« ■ 3. 

Additional information on the surface pressure distribu- 
tions inside the long shroud, typical surface probe pitot 
transition profiles, the transition Reynolds number values 
obtained inside the shroud, and the shroud inner wall measured 
boundary-layer characteristics are presented in Appendix III 
for M =3,4, and 5. 

Confirmation of the proposed effects of aerodynamic 
noise on the shroud transition results was provided by an 8- 
by 5-in. sharp-leading-edge flat plate (5 = 0.0015 in., 
ÖLE = *> deg) microphone model located as shown in Figs. 5a 
and 6a.  The flat-plate model was instrumented with two com- 
mercially available l/4-in.-diam condenser microphones having 
a frequency response range from zero to one-hundred-thousand 
cycles per second.  One microphone was mounted flush with the 
plate surface, and the second was mounted internally to record 
model vibrational effects on the microphone response.  Vibra- 
tional effects were found to be insignificant.  The microphone 
data were recorded visually from two RMS voltage meters and 
also recorded on magnetic tape. The uncorrected RMS pressure 
fluctuations received by the surface microphone are plotted 
in Figs. 5c and 6c as a function of the tunnel Re/in. values 
for the conditions of shroud off and shroud on. The shroud- 
on configuration was tested with and without a boundary-layer 
trip in position near the shroud leading edge.  It is clearly 
seen that the RMS radiated pressure fluctuations in Figs. 5c 
and 6c were a mirror image of the transition data in Figs. 5b 
and 6b, respectively; i.e., as the aerodynamic noise increased, 
the Ret decreased. Furthermore, the trends and intersection 
points of the radiated pressure data were in good agreement 
with the Ret results. For example, the M^ = 3, long shroud, 
no-trip Ret data in Fig. 5b intersected the shroud-removed 
data at a Re/in. value near 0.15 x 106 and intersected the 
trip Ret data at approximately 0.40 x 106.  Correspondingly, 
the pYq«, data in Fig. 5c exhibited very nearly identical 
points of intersection.  Details of the microphone model and 
additional information on the microphone are included in 
Appendix III. 

For the no-shroud case, it is of interest to note the 
decrease in the noise results and the corresponding increase 
in the Ret data with increasing unit Reynolds number.  This 
trend adds support to the tentative suggestion that a part 
of the Ret variation with unit Reynolds number in supersonic 
and hypersonic tunnels is a result of decreasing radiated 
pressure fluctuations with increasing unit Reynolds number. 
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Similar transition results with and without the shroud con- 
figuration were also obtained in Tunnel A at M«, = 4.  At a 
unit Reynolds number value of 0.34 x 106 the AEDC-VKF Tunnel 
D p/ob, data obtained using the same microphone model and in- 
strumentation were approximately three to four times higher 
than the Tunnel A noise results for Mach M^ = 3 and 4. 

It is felt that these data show conclusively the strong 
effect of radiated aerodynamic noise generated by a turbulent 
boundary layer on boundary-layer transition. 

The tunnel radiated pressure fluctuations (p/q^,) without 
the shroud presented in Figs. 5c and 6c were in qualitative 
agreement in both magnitude and trend with the hot-wire, RMS, 
p/q» data of Laufer published in Refs. 7 and 11.  Also the 
Tunnel A, no-shroud, M«, = 3 data scaled with the wall turbu- 
lent shear stress and were independent of unit Reynolds number 
as were the hot-wire results of Laufer (Ref. 11) and the 
microphone data of Kistler (Ref. 10). 

SECTION V 
TRANSITION CORRELATION 

Theoretical and experimental studies contributing to the 
basic understanding of the radiated pressure field generated 
by a turbulent boundary layer were reviewed in Section I. 
These investigations determined that the major factors which 
influence the radiated fluctuating pressures are the 
turbulent-boundary-layer wall mean shear and thickness, the 
Mach number, and the tunnel test-section size.  Using these 
factors as a guide and employing the premise that transition 
Reynolds numbers in supersonic (M^ > 3) and hypersonic wind 
tunnels are influenced primarily by the radiated aerodynamic 
noise, a correlation of transition Reynolds numbers was 
developed. 

The correlation was based on two-dimensional, hollow- 
cylinder transition data obtained in these experiments from 
the AEDC-VKF 12-in. and 40-in. and the AEDC-PWT 16-ft tunnels 
and from previously published hollow-cylinder data from the 
AEDC-VKF 12-in. and 40-in. tunnels and hollow-cylinder and 
flat-plate transition data published from six other wind tun- 
nels of various sizes. The test conditions covered a Mach 
number range from 3 to 8 and a unit Reynolds number range 
from 0.05 x 106 to 1.1 x 106 per inch. 

The nine wind-tunnel facilities that provided transition 
data used in the correlation are tabulated in Table I along 
with the specific range of test conditions and pertinent 
model details. 
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Values of the transition Reynolds numbers used in the 
correlation correspond to the location determined from the 
peak in the surface pitot probe pressure trace and are for a 
zero leading-edge bluntness. Transition data from other 
sources which were not obtained using a pitot probe were 
adjusted according to Refs. 17 and 18, as listed in Table I. 
The zero-bluntness Re^ data were obtained by extrapolating 
the transition values from sharp, but finite leading-edge 
models (see Table I) to b = 0.  It is desirable to correlate 
data for b - 0 since this in effect removes the model leading- 
edge geometric influences. 

Transition Reynolds number data from the nine wind tun- 
nels are presented in Fig. 7 as a function of the wall, mean 
turbulent, skin-friction coefficient (Cp) , the wall boundary- 
layer displacement thickness (5*), and the tunnel circumfer- 
ence (c).  The parameter Re^ \J5*/c  is seen to have cor- 
related the data as a function of Cp for a particular size 
tunnel; however, the results show a definite and regular be- 
havior with increasing tunnel size.  The mean skin-friction 
coefficient was determined from Ref. 21 using the model 
locations (j0m) listed in Table I.  When the experimental 6* 
values in the tunnel test section were not available, then 
empirical 6* values were determined using the correlation 
method presented in Ref. 22. Table I provides additional in- 
formation on the source of values used for 6*.  Appendix V 
gives additional information on experimental and theoretical 
(Ref. 21) mean skin-friction coefficients and the 5* cor- 
relation method of Ref. 22. 

The normalized parameter 

»■ >£/(*• fi) „. / '^=48 in. 

is plotted in Fig. 8 for the four basic size tunnels.  A 
linear fairing of these data provides a method for collapsing 
all the Re-t data in Fig. 7 onto a single correlation curve. 

Figure 9 presents the final correlation of the transi- 
tion Reynolds number data.  It should be noted that the 
correlation was independent of unit Reynolds number and Mach 
number and depended only on the aerodynamic noise parameters, 
Cp, 6*, and c. The transition data used in Fig. 9 covered 
the full Mach number and unit Reynolds number ranges of each 
data source. An empirical equation can be written for the 
data correlation in Fig. 9 as 

0.0141 (CFr
2-S5[o-56 + 0.44 -^1 

Ret = *= aJ 
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Ref. Sym ^ Source 

Present Study, 17 o 3.0 AEDC-VKF-D(12-byl2-in.) 
17 A 4.0 1 17 a 5.0 
25 d 5.0 AEDC-VKF-E (12- by 12-in.) 
26 o 6.1 

1 ^ 7.1 
0 8.0 ' 1 

Present Study, 13 • 3.0 AEDC-VKF-A(40-by40-in.) 

\ 
A 4.0 i ■ 5.0 

18 4 8.0 AEDC-VKF-B (50-in. Diam) 
31 0 3.7 JPL-SWT (18- by 20-in.) 
31 o 4.6 * 
28 0 6.0 NASA-Langley(20-by20-in.) 
27 ♦ 6.0 AEDC-VKF-B (50-in. Diam) 
27 4 8.0 ♦ 
29 6 3.1 NACA-Lewis (12- by 12-in.) 
30 0 5.0 NASA-Lewis (12-by 12-in.) 

Present Study 9 3.0 AEDC-PWT-16S (16- by 16-ft) 
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Fig. 7 Influence of Tunnel Size on the Boundary-Layer Transition Reynolds Number Correlation 
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The aerodynamic noise parameters (Cp, Ö*,   and c) appear- 
ing in the correlation and empirical equation are the same 
factors that have been shown by previous investigators to be 
significant factors in turbulent-boundary-layer-generated 
aerodynamic noise. 

The reader is reminded that the transition Reynolds 
number correlation presented in Fig. 9 and the resulting 
empirical equations are applicable only to wind tunnels 
having turbulent boundary layers on the walls.  The correla- 
tion cannot be applied to ballistic ranges ort free flight 
because of the obvious restrictions imposed by Cp and <5*. 
Similarly, since the correlation was developed\for finite- 
size wind tunnels and the proper boundary conditions for free 
flight are not included, conclusions relative to\fundamental 
influences on transition in free flight cannot be\drawn, i.e., 
the influence of Mach number and unit Reynolds number, per se. 
The correlation does, however, clearly establish that a major 
and, perhaps, dominant influence of aerodynamic noise exists 
in wind-tunnel transition experiments. ] 

SECTION VI 
COMPARISONS OF CORRELATION PREDICTIONS 

WITH EXPERIMENTAL RESULTS 

6.1 INFLUENCE OF UNIT REYNOLDS NUMBER, MACH NUMBER, AND TUNNEL SIZE 

Typical transition Reynolds number data are presented in 
Figs. 10, 11, and 12 to illustrate the variation of Ret with 
changes in the unit Reynolds number, tunnel size, and tunnel 
Mach number.  The increase in Ret with increasing tunnel Mach 
number (Figs. 10a and 12) and unit Reynolds number (Fig. 10a) 
is a characteristic trend shown previously by many investi- 
gators, but the increase in Ret with tunnel size presented in 
Figs. 10b, 11, and 12 has not been shown previously.  The ex- 
perimental noise results presented in Figs. 5 and 6, along with 
the general success of the correlation and the good agreement 
between the experimental Ret data in both magnitude and trend 
with estimates from the empirical equation, suggest that the 
increase in Ret with the unit Reynolds number in supersonic and 
hypersonic wind tunnels is directly related to the radiated 
aerodynamic noise emanating from the tunnel wall turbulent 
boundary layer.  Although this is suggested by the wind-tunnel 
results and the correlation, it cannot be definitely concluded 
because of the results from the VKF range (Ref. 23). 

24 



AEDC-TR-67-236 

0.0141 (Cp)"2-55 (a 56 + 0.44^1) 

10x106 

Estimated   Re, 

Ref. Sym Moo Tunnel 

Present Study and 13 o 3.0 AEDC-VKF-A 
1 A 4.0 I 
T D 5.0 i 
18 0 8.0 AEDC-VKF-B " 
27 0 6.0 AEDC-VKF-B 

Re, 

Re, 

1 

9 

8 
7 
6 
5 

4 

3 - 

2 - 

1 
0.03 0.04     0.06 0.08 0.1 

- Ref.  Sym M» Tunnel 3^ 
31     o 
31    o 
28     0 

-26    ^ 

3.7 
4.6 
6.0 
7.1 

JPL-SWT 
JPL-SWT 
NASA-Langley 
AEDC-VKF-E 

v^ 
# 

- 

a. 

1              1 1 i         ;      i 

s% - 

i      i i      i 

&.{ 

I? 

0.2 

Re/in. 

0.3   0.4      0.6   0.8 l.OxlO6 

a.   Mach Number and Unit Reynolds Number Effects (b =  0) 

Fig. 10   Comparison of Measured and Estimated Transition Reynolds Numbers from Several 

Tunnels for Various-'Mach Numbers and Unit Reynolds Numbers 

25 



AEDC-TR-67-236 

Symbols Represent Experimental Data 

0.0141 (Cp)"2-55 

•Estimated    R^ 

0.56+ 0.44^_L 

5 x 106 

I  ' I ' I T~] r 

Tunnel 
l ' l ' I   i   M 

AEDC-VKF-A    - 

AEDC- 
VKF-D 

Long Shroud 

I   i   I i l i I   III 

0.03 0.04    0.06 0.08 0.1 0.2      0.3   0.4 

Re/in. 

0.6   0.8 l.OxlO6 

b.   Tunnel Site and Unit Reynolds Number Effect at M„ 

Fig. 10 Concluded 

=   3, b =  0 

26 



AEDC-TR-67-236 

5x 10° 

4   - 

3   - 

R^ 

Estimated    Re^ = 
0.0141 (CF)"2-55 To. 56 + 0.44 (% 

# 

0   Extrapolated Point 
•   From Data Crossplot 

b = 0 

2   _ 

1   - 

_ 
Tunnel 

^- 'AEDC- 

AEDC-VKF-A 

-    JPL-SWT^5-^^ 
- - 

—-*-** PW-16S 

 •-"— 

o^AEDC-VKF-D Re/in. - 0.20 x 106 

" Long Shroud 

1           1           1 1 i i i 

0    100   200  300   400   500   600   700   800 

im, in. 

Fig. 11    Effect of the Tunnel Size on Transition at M^,  = 3 

27 



AEDCTR-67-236 

lOxlO6 

Ref. Sym Tunnel      Test-Section Size 

Present Study, 13     • AEDC-VKF-A 40-by 40-in. 
18 ▲ AEDC-VKF-B 50-in. Diam 
27 ä AEDC-VKF-B 50-in. Diam 

Present Study, 17      D AEDC-VKF-D 12- by 12-in. 
25, 26 0 AEDC-VKF-E 12- by 12-in. 

31 ^ JPL-SWT 18-by20-in. 
Present Study 0 AEDC-PWT-16S 16- by 16-ft 

—Estimal 

0.0141 {CF)-2-55 0.56+0.44^ 

ted,    R^ ■ 

fl 
b = 0 

c 

9 \- 
8 
7 

6 [- 

5 

Ret 

,  i—Extrapolated Point 
Tunnel  1 

16 Tf- 

40-in. 

20*tff. 

sl2ji.n.^.i 

50-in. 
diam 

0 12-in. 

Re/in. "0.20X1Ö6 

M GO 

on of Transition Reynolds Number with Increasing Tunnel Mach Number 

28 



AEDC-TR-67-236 

If it is assumed that noise from various sources in a 
range is small compared to the wind tunnel, one would not 
expect a variation in transition Reynolds number with unit 
Reynolds number in the range as a result of noise.  Potter's 
results presented in Ref. 23 for a 10-deg half-angle, 1.75- 
in.-diam cone with a 0.005-in. nose radius (one model with a 
2.3-in. diameter), a local Mach number of approximately 4.34 
and a wall temperature ratio of approximately 0.184 show a 
unit Reynolds number effect in the range. 

6.2 MACH NUMBER EFFECT 

Comparisons of the measured and estimated transition 
Reynolds numbers with increasing Mach number from several 
wind tunnels are presented in Fig. 12.  Several important 
conclusions are drawn from this figure.  First, it is obvious 
that transition data from different size wind tunnels cannot 
be used to establish a trend of Re-^ with Mach number. Second, 
the correlation using Cj-, 6*, and c produced Re-j- values in 
good agreement with the experimental results. The question 
that naturally arises as a result of this is concerned with 
what is the true Mach number effect.  There are experimental 
data that may provide some insight into this question. 

Figure 13a presents Re-^ data as a function of local cone 
Mach number for a free-stream Mach number of eight. The data 
for the 7.5- and 15.8-deg cones were published in Ref. 24. 
The data for the 5- and 20.1-deg cones were obtained through 
personal correspondence with Mr. Stainback.  For a given free- 
stream Mach number, there are two cone angles which will pro- 
duce equivalent local unit Reynolds numbers but significantly 
different local Mach numbers. Figure 13a shows that when the 
local Mach number was changed from approximately 4 to 7 for 
constant free-stream conditions, there was no significant 
upward trend with Mach number except for the lowest unit 
Reynolds number.  Stainback in Ref. 24 concluded that perhaps 
there was not a Mach number effect on cones as contrasted to 
Mach number effects on two-dimensional models similar to the 
results presented in Fig. 12.  The conclusions of Ref. 24 are 
in agreement with the implications of the correlation pre- 
sented herein. 

It should be pointed out that the 5- and 20.1-deg cone 
angles produce equivalent local unit Reynolds numbers as do 
the 7.5- and 15.8-deg cones.  However, for the local unit 
Reynolds number conditions to have been constant for both 
sets of cone values as listed in Fig. 13a, there would nec- 
essarily have been a 10- to 15-percent difference in the 
free-stream conditions.  A 15-percent difference in Re/in. 
would produce a maximum change in Re^ of approximately 10 
percent, and this is well within the scatter of the data. 
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Consequently, it seems justified to compare the four sets of 
cone data directly. 

Additional transition data on flat plates pitched to 
change the local conditions are presented in Figs. 13b and c. 
The results in Fig. 13b show for constant free-stream tunnel 
conditions there was no increase (or small increase) in Re^ 
with increasing local Mach number. Figure 13c suggests per- 
haps a linear increase in Re^ with increasing Mach number, 
but the rate of increase is less than indicated in Fig. 12 
for increasing tunnel Mach number.  Hollow cylinder data ob- 
tained at different tunnel Mach numbers are included in Figs. 
13b and c for comparison. 

Cone and pitched flat-plate transition data should be 
plotted for a constant free-stream unit Reynolds number to 
show the influence of Mach number since this is the case 
where the radiated aerodynamic noise is constant.  It should 
be noted that in Fig. 13a the local unit Reynolds number 
remained constant between the cone models for a.given free- 
stream unit Reynolds number, but for the flat plate (Figs. 
13b and c) the local unit Reynolds number varied because the 
pitch angles were not selected with the intended purpose of 
producing a constant local unit Reynolds number. 

These results indicate that if a true Mach number effect 
on transition Reynolds number exists at supersonic and hyper- 
sonic speeds, it appears doubtful that the trend could be 
established by comparing transition data at different Mach 
numbers obtained in wind tunnels having turbulent boundary 
layers because of the influence of radiated aerodynamic noise. 

SECTION VII 
CONCLUDING REMARKS 

The significant results and conclusions obtained from 
this research, which was directed toward an investigation of 
the effect of radiated aerodynamic noise on boundary-layer 
transition on models in supersonic and hypersonic wind 
tunnels, are summarized as follows: 

1. Boundary-layer transition measurements at Mach 
number three on sharp-leading-edge, hollow-cylinder 
models in the AEDC-VKF 12-in. and 40-in. Tunnels D 
and A and the AEDC-PWT 16-ft supersonic tunnel have 
shown conclusively a significant and continuous 
increase in transition Reynolds numbers (Ret) with 
increasing tunnel size. This increase in Re^ is 
explained by a decrease in the radiated aerodynamic 
noise emanating from the tunnel wall, turbulent 
boundary layer as the tunnel size increases. 
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2. Results from a shroud configuration placed concen- 
trically around a hollow-cylinder transition model 
in the AEDC-VKF Tunnel A demonstrated a significant 
change in the magnitude and trend in transition 
Reynolds number with unit Reynolds number, as com- 
pared to transition Reynolds numbers without the 
shroud, when the boundary layer on the shroud wall 
changed from laminar to turbulent. 

3. A flat-plate model equipped with a microphone con- 
firmed that a significant increase in the RMS 
radiated pressure fluctuations accompanied the 
decrease in the transition Reynolds numbers between 
the AEDC-VKF 40-in. and 12-in. tunnels and the 
decrease in transition Reynolds number as the 
shroud wall boundary layer changed from laminar to 
turbulent. 

4. From transition data obtained in these investigations 
and data from six other wind tunnels, a correlation 
of transition Reynolds numbers was developed.  The 
correlation was based on zero-bluntness, flat-plate, 
and hollow-cylinder transition data which covered 
a Mach number range from 3 to 8 and a unit Reynolds 
number range from 0.05 to 1.1 x 1Ö6. The corre- 
lation was independent of Mach number and unit 
Reynolds number and was dependent only on parameters 
known to have an influence on radiated aerodynamic 
noise. These included wall turbulent, mean skin- 
friction coefficient (Cp), boundary-layer displace- 
ment thickness (5*), and the tunnel test-section 
circumference (c). 

5. Transition data on sharp cones and flat plates 
pitched to angles of attack have indicated that 
for high tunnel unit Reynolds numbers the transi- 
tion Reynolds number (Re-j.) is perhaps invariant 
with local Mach number, provided the tunnel Mach 
number remains constant.  This is in agreement with 
the transition correlation of wind-tunnel data and 
suggests that possibly a major part of the increase 
in Ret with increasing tunnel Mach number is related 
to the radiated aerodynamic noise. 

6. If a true Mach number effect on transition Reynolds 
numbers exists at supersonic and hypersonic speeds, 
it appears doubtful that the trend can be established 
by comparing transition data at different Mach 
numbers obtained in wind tunnels having turbulent 
wall boundary layers because of the influence of 
radiated aerodynamic noise. 
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7. The experimental, radiated noise results and the 
success of the correlation of wind-tunnel data 
suggest that a major part of the heretofore 
unexplained unit Reynolds number effect in super- 
sonic and hypersonic wind tunnels having turbulent 
boundary layers on the walls may be the result of 
radiated aerodynamic noise. 

8. Based on transition Reynolds number data presented 
in this report and data from two other sources, it 
is concluded that there is no leading-edge internal 
bevel-angle effect on transition Reynolds numbers 
from sharp leading-edge models at supersonic and 
hypersonic speeds. 
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APPENDIX I 
TRANSITION DATA AND TUNNEL WALL BOUNDARY-LAYER CHARACTERISTICS 

FROM THE AEDC-PWT-16S TUNNEL 

1.1 AEDC-PWT-16S TUNNEL AND MODEL DETAILS 

A sketch of Tunnel 16S is presented in Fig. 1-1.  Information 
on the tunnel operating range can be found in Section II.  The 
position of the hollow-cylinder transition model and the locations 
of the two wall boundary-layer rakes relative to the test section 
and the tunnel throat are shown in Fig. I-lb. 

Details of the hollow-cylinder model, model support, and 
probe drive mechanism are shown in Fig. 1-2.  Small variations 
in the model leading-edge thickness existed, and these bluntness 
values are tabulated in the table included in Fig. 1-2 as a 
function of the model circumferential location.  The leading- 
edge bluntness was determined by making bluntness impressions 
(impression depth approximately two to four times bluntness 
value) in thin (sharpened) soft lead sheet and viewing the pro- 
file on a 100-power comparator.  The individual bluntness values 
(b) listed in Fig. 1-2 for each model leading-edge location are 
the average of several impressions. Additional comments con- 
cerning the accuracy of this method are given in Appendix II. 

1.2 AEDC-PWT-16S BOUNDARY-LAYER CHARACTERISTICS 

The tunnel wall boundary-layer characteristics presented in 
Fig. 1-3 were determined using the fourteen-rake pitot pressures 
and the tunnel free-stream static pressure in conjunction with 
the usual assumptions that the total temperature and the static 
pressure remain constant through the boundary layer. 

The following equations were used to define the two- 
dimensional displacement and momentum thickness, respectively: 

8* * JVä)* 

9  = f    -2- (l   -  —Vy 
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1.3 AEDC-PWT-16S TRANSITION RESULTS 

Surface pitot probe pressure traces from probe No. 1 
(bluntness value b of 0.0012 in.) are presented in Fig. 1-4 
for M,,,, = 2.0, 2.5, and 3.0 and several tunnel unit Reynolds 
number values. These data serve to show the quality of the 
probe data obtained. As explained in Section III, the location 
of transition was defined as the peak in the pitot pressure 
profile. 

The transition Reynolds number results as determined by the 
maximum surface pitot pressure value are presented in Fig. 1-5 
for M^ = 2.0, 2.5, and 3.0 for the average bluntness values (5) 
of 0.0015, 0.0050, and 0.0090-in.  These data show the familiar 
increase in Ret with Re/in., which is a characteristic exhibited 
by most other supersonic wind tunnel data. 

Figure 1-6 presents the Ret values plotted versus b for 
several Re/in. values and the three Mach numbers tested.  These 
plots were used to obtain the b = 0 value used in the correlation 
presented in Section V. 

The slight variation in leading-edge bluntness that existed 
around the model circumference was apparently sufficient to in- 
fluence the location of transition. Figure I-7a shows the pitot 
pressure traces obtained simultaneously from the four surface 
probes and variations in the xt values are clearly evident. 
Figures I-7b and c show a systematic variation of Re^ with the 
local leading bluntness value (b), and the slope is in agreement 
with the slope of the data presented in Fig. 1-6.  This would 
indicate that the small variation in Ret that existed between 
the four pitot probes is traceable to variations in the model 
leading-edge bluntness rather than to individual probe effects 
or from any tunnel flow angularity.  The model internal lip 
pressures indicated that a free-stream flow angle less than ap- 
proximately ±0.1 deg existed, and this is in general agreement 
with Ref. 16. 

The variation in the AEDC-FWT-16S transition data with Mach 
number is shown in Fig. I-8a.  Coles' data from Ref. 31 obtained 
in the JPL 20-in. supersonic tunnel is presented in Fig. I-8b. 
These data indicate that the increase in Ret with decreasing 
Mach number in the 1.5 < M^, < 3.0 range is the rule rather than 
the exception.  However, it is to be remembered that for M^ < 3 
the tunnel stilling chamber turbulence level will have a strong 
influence on the location of transition as discussed in Section 
I.  It is of further interest to note the decreasing effect of 
Mach number on Coles' data for M^ > 3 as the unit Reynolds number 
decreases.  This type trend is also evident in Schueler's data 
(Ref. 13).  It is, therefore, possible that the decreasing influence 
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of Mach number (M^ > 3) as Re/in. decreases is also connected 
to the radiated aerodynamic noise effects discussed in Sections 
I, IV, V, and VI. 

All of the AEDC-P¥T-16S transition Reynolds number data 
obtained in this investigation are tabulated in Table 1-1. 
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TABLE 1-1 
AEDC-PWT-16S TUNNEL BASIC TRANSITION REYNOLDS NUMBER DATA, 

12.0-IN.-DIAM HOLLOW CYLINDER 

Average Average 

M Po. T 
O' 

Re/in. Retl Ret2 Ret3 Ret4 
Ret 5, 

CO psla °R x   10-6 x   10-6 x   10-6 x   10-6 x  10-6 x  10-6 in. 

3.00 5.23 647 0.0516 2.16 2.16   2.12 2.15 0.0015 
3.00 6.21 666 0.0591 2.26 2.26 — 2.26 2.26 
3.01 7.09 656 0.0686 2.42 2.40 2.47 2.32 2.40 
3.01 7.06 653 0.0689 2.48 2.43 2.46 2.34 2.43 
3.00 7.93 669 0.0748 2.43 2.42 2.54 2.40 2.45 
3.00 9.27 671 0.0873 2.57 2.59 2.62 2.53 2.58 
3.00 9.27 669 0.0876 2.59 2.63 2.72 2.54 2.62 
3.00 10.92 667 0.104 2.85 2.88 2.91 2.68 2.83 ■ 

3.00 5.09 645 0.0517 — 2.30 2.36 2.32 2.33 0.0050 
3.00 7.12 649 0.0701 2.64 — 2.64 2.54 2.61 0.0042 
3.00 7.17 655 0.0700 — 2.82 — 2.88 2.85 0.0050 
3.00 9.28 664 0.0888 — 2.81 2.84 2.77 2.81 0.0050 
3.00 6.22 658 0.0603 2.53 2.63 2.77 2.63 2.64 0.0090 
3.00 7.05 657 0.0686 2.75 2.81 — 2.75 2.77 
3.03 8.36 659 0.0794 2.94 3.05 3.08 2.91 2.99 
3.00 9.20 644 0.0920 3.26 3.36 3.40 3.18 3.27 
3.03 10.52 659 0.0998 3.19 3.39 3.36 3.23 3.29 
2.50 4.06 641 0.0535 2.52 2.52 __ __ 2.52 0.0015 
2.51 4.62 642 0.0605 2.54 2.60 2.64 — 2.59 
2.50 5.34 654 0.0685 2.71 2.81 2.81 2.81 2.78 
2.50 5.46 655 0.0694 2.66 2.70 2.77 — 2.71 
2.50 6.31 657 0.0798 2.76 2.71 2.87 -- 2.78 
2.50 7.82 654 0.1003 3.18 3.08 3.29 3.12 3.16 
2.50 8.57 658 0.1089 3.32 3.16 3.38 3.16 3.25 l ■ 

2.50 5.38 658 0.0684 2.82 2.93 2.93 2.98 2.91 0.0050 
2.50 6.26 655 0.0799 3.04 3.14 3.12 2.98 3.07 1 2.50 8.65 656 0.1105 3.68 3.65 3.80 3.76 3.72 
2.00 5.62 632 0.0970 3.68 3.40 3.83 3.64 3.64 0.0015 
2.00 7.45 631 0.1286 4.12 3.73 4.38 4.12 4.09 0.0015 
3.0 — - 0.050 — —     2.09 0* 

1 0.070 2.32 
1 0.090 2.54 ♦ 0.11 2.71 

2.5 

1 
0.050 
0.070 
0.090 
0.11 

2.38 
2.64 
2.89 
3.09 

2.0 0.090 3.40 

1 0.11 3.65 
t ' ■ 0.13 ' ■ 

1 i 3.86 t 

Extrapolated Values  of Ret  from Fig.   1-6. 
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APPENDIX II 
TRANSITION REYNOLDS NUMBER DATA AND TUNNEL WALL BOUNDARY-LAYER 

CHARACTERISTICS FROM THE AEDC-VKF TUNNEL A 

2.1 AEDC-VKF TUNNEL A AND TRANSITION MODEL DETAILS 

Some of the pertinent design and geometrical features 
of the 40- by 40-in. Tunnel A are illustrated in Fig. II-l. 
Information on the tunnel operating range can be found in 
Section II. 

Details of the 3.0-in.-diam hoilow-cylinder transition 
model are given in Fig. 11-2.  The. model leading-edge nose 
bluntness was determined from impressions (depth equal to 
approximately two to four times the bluntness value) in thin 
(sharpened) soft lead sheet and from rubber molds made from 
General Electric Company RTV 60® silicone rubber compound. 
Both methods were nondestructive to the model leading edge. 
Profiles of the lead impressions and slices (approximately 
0.04-in. in width) from the rubber mold were then read on a 
100-power comparator to determine the leading-edge bluntness. 
Several lead impressions and several cuts from each of the 
rubber molds were averaged to obtain the bluntness value at 
each of several circumferential stations around each of the 
leading-edge sections.  The maximum difference between aver- 
age bluntness values obtained using lead impressions and 
rubber molds was ±0.0002-in.  Measurements with the lead 
impressions were repeatable to within +0.0002-in., and meas- 
urements with the rubber molds were repeatable to within 
±0.0001-in.  The circumferential variation in bluntness 
around the model leading edge was ±0.0001-in. 

The flexible plate which forms the lower nozzle wall in 
the Tunnel A was damaged on October 10, 1961.  The damage 
(Figs. II-l and II-3) occurred in the converging region of 
the nozzle upstream of the throat where several of the lugs 
which connected the flexible plate to automatically con- 
trolled actuators were broken or cracked.  Repair of the 
plate required new lugs to be bolted to the plate as were 
the original lugs.  A total of 160 steel bolt heads, pro- 
truding 0.158-in. above the plate surface, was required (Fig. 
I1-3).  Details of the replacement lugs, bolt heads, and 
plate damage can be found in Ref. 15. 

Test results presented in Ref. 15 show that the con- 
necting bolt heads had no significant effect on the uniform- 
ity of the free-stream flow but increased the boundary-layer 
displacement thickness (ö*) on the repaired plate by a fac- 
tor of approximately 1.5 at a freestream Mach number (M^) of 
1.5 and had no effect on 5* at M =5.0. 
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To obtain more information on the effects of the bolt 
heads on the bottom plate boundary-layer growth and to pro- 
vide information on 6* to be used in the transition correla- 
tion (discussed in Section V), additional boundary-layer 
profile measurements were made on the repaired bottom flex- 
ible plate and the top (undamaged) flexible plate using a 
23-probe rake. These results are presented in Fig. II-3 and 
confirm the results of Ref. 15, which showed no bolt head 
effects on the bottom plate at M^ = 5.0.  Likewise, there 
was no effect at MM = 4.0 and only about a six-percent in- 
crease in 6* at M«, = 3.0 when compared with the results from 
Ref. 32. 

Since this research was directed toward investigating 
the effects of radiated aerodynamic noise on transition, it 
was felt necessary to determine if the plate repair produced 
any noticeable differences on model transition. Therefore, 
a set of duplicate rubber bolt heads were glued to the top 
flexible plate, and the boundary-layer characteristics on 
the top plate and the transition location on the 3.0-in. 
diam hoilow-cylinder model were measured with and without 
these rubber bolt heads.  These results are presented in 
Figs. I1-3 and I1-4.  Calculation of the displacement and 
momentum thickness was in accordance with equations in 
Appendix I. 

2.2- AEDC-VKF TUNNEL A TRANSITION RESULTS 

Figures II-4 and I1-5 present the transition Reynolds 
number data obtained on the 3.0-in.-diam hoilow-cylinder 
model.  The permanent steel bolt heads or the duplicate set 
of rubber bolt heads produced no discernible effect on Ret. 
Also, there was no effect of the internal bevel (ÖLE) angle 
on Re^..  Figure 11-5 provided the zero bluntness values of 
Ret for use in the transition correlation presented in 
Section V.  All of the basic Tunnel A transition results ob- 
tained in this investigation along with the corresponding 
tunnel flow conditions and model leading-edge geometry are 
tabulated in Table II-l. 
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TABLE II-1 
AEDC-VKF TUNNEL A TRANSITION REYNOLDS NUMBER DATA, 

3.0-IN.-DIAM HOLLOW-CYLINDER 

M 
00 

Po' 
psia 

To» 
°R 

Ret 
x  10"6 in. 

Ret 

x  10"6 in. 

9LE' 
deg Remarks 

2.98 16.6 560 0.206 13.3 2.74 0.0021 6 
2.99 20.5 560 0.253 11.5 2.91 
2.99 24.8 564 0.303 10.5 3.18 
2.99 32.8 565 0.400 8.6 3.44 
3.00 40.7 566 0.493 7.5 3.69 

4.02 28.0 565 0.200 14.6 2.92 
4.02 34.1 563 0.244 12.6 3.08 
4.02 41.0 565 0.292 11.0 3.22 
4.02 56.5 562 0.405 9.1 3.69 
4.02 64.5 565 0.459 8.4 3.85 

5.04 50.95 603 0.200 17.0 3.40 
5.04 81.96 640 0.294 13.6 4.00 
5.06 136.7 644 0.484 10.9 5.26 

1 
■ f 

2.98 16.2 572 0.195 16.0 3.12 0.0036 6 
2.99 20.5 571 0.246 13.5 3.32 
2.99 25.6 570 0.308 11.7 3.60 
2.99 33.3 571 0.400 10.0 4.00 
2.99 41.4 573 0.494 9.0 4.45 
3.00 49.2 575 0.581 8.3 4.82 

2.98 12.2 560 0.151 —— — Duplicate 
2.98 16.4 560 0.203 15.2 3.09 Set of  . 
2.99 25.2 561 0.311 11.7 3.64 Rubber Bolt 
2.99 41.4 565 0.505 8.5 4.29 Heads on 
2.99 20.2 567 0.245 14.2 3.48 Top Plate 
2.99 33.2 569 0.400 10.2 4.08 1 
3.00 49.3 575 0.582 8.1 4.71 1 
2.99 41.4 575 0.491 8.7 4.28 ' ■ ■ ■ T 

4.02 28.4 563 0.203 15.0 3.04 0.0036 6 
4.02 34.3 561 0.246 14.0 3.44 
4.02 41.5 561 0.298 13.5 4.02 
4.02 56.3 562 0.404 11.3 4.56 
4.02 73.4 567 0.518 10.0 5.18 

4.00 20.3 563 0.147 __ __ Duplicate 
4.01 28.2 563 0.205 15.0 3.08 Set of 
4.02 34.3 564 0.245 14.3 3.50 Rubber Bolt 
4.02 41.3 561 0.297 13.5 4.01 Heads on 
4.02 56.2 564 0.401 11.3 4.53 Top Plate 
4.02 73.3 566 0.520 10.0 5.20 1 
4.02 64.8 566 0.460 10.8 4.96 1 
4.01 25.3 560 0.183 16.0 2.93 

' ■ T T 

5.05 81.5 638 0.292 16.0 4.67 0.0036 6 
5.06 109.9 645 0.386 14.5 5.60 | 1 
5.06 137.1 647 0.478 14.0 6.69 1 1 
5.05 150.5 649 0.526 13.8 7.26 t Y 
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TABLE ll-l (Concluded) 

AEDC-TR-67-236 

00 

V 
psia 

To» 
°R 

Re/in. 

x 10"6 in. 

Ret 
x 10"6 in. 

9LE' 
deg Remarks 

5.04 50.2 604 0.197 —— __ 0.0036 6 Duplicate 
5.04 81.6 634 0.297 15.5 4.61 Set of 
5.06 110.5 648 0.385 14.5 5.59 Rubber 
5.06 137.1 651 0.475 14.0 6.65 Bolts on 
5.05 150.4 649 0.525 13.8 7.25 Top Plate 

3.00 41.0 563 0.503 6.5 3.27 0.0013 12 
2.99 32.9 563 0.403 7.6 3.06 
2.99 24.8 562 0.305 9.2 2.81 
2.98 16.7 562 0.206 12.5 2.58 

5.06 136.4 642 0.483 9.9 4.78 
5.04 82.3 640 0.296 12.7 3.76 

' f 

2.98 16.5 565 0.203 13.4 2.72 0.0023 12 

2.99 32.7 563 0.401 8.4 3.37 1 \ 2.99 24.7 562 0.304 10.0 3.04 

2.98 16.2 566 0.198 15.0 2.97 0.0030 12 
2.99 25.4 566 0.309 10.7 3.31 
2.99 33.6 568 0.407 9.2 3.74 
2.99 40.9 571 0.491 8.0 3.93 
3.00 48.7 573 0.578 7.3 4.22 
2.99 33.1 564 0.404 9.3 3.76 
2.99 25.0 565 0.305 10.6 3.24 l 

1 1' 

3.0 — »560 0.15 -- 2.10 0* — Extrapolated 
0.2 2.25 Value of Re+ 
0.3 2.49 
0.4 2.68 
0.5 2.82 Y ■' 

1 < 0.6 ■ 

1 

2.96 ' ' ' ■ i * 

4.0 — «560 0.15 -_ 2.37 0* — Extrapolated 
0.20 2.60 Value of Re+ 
0.30 2.92 
0.40 3.20 
0.50 3.41 1 ' ■ * 1 
0.60 

1 ■ 3.60 T ' ■ 

5.0 — — 0.15 —— 2.64 0* —- Extrapolated 
0.20 2.91 Value of Re+ 
0.30 3.38 
0.40 3.80 
0.50 4.12 

■ 

1 '' ■ i 

0.60 
\ ■ 

4.40 1 ' i' 1 

From Figs.   II-4 and  II-5 
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APPENDIX III 
EXPERIMENTAL RESULTS FROM THE LONG AND SHORT SHROUD CONFIGURATIONS 

INSTALLED IN THE AEDC-VKF TUNNEL A 

3.1 SHROUD MODEL AND MICROPHONE MODEL 

Long and short shrouds (11.42-in. ID) (Fig. III-l) were 
used to shield the 3.0-in.-diam hollow-cylinder model.  The 
short shroud was maintained at a fixed position, and the long 
shroud was repositioned axially to prevent shroud leading 
shock interference in the region of transition measurements 
on the transition model. 

The microphone model (Fig. III-2) was an 8- by 5-in. 
sharp leading-edge flat plate instrumented with two 1/4-in.- 
diam microphones and two static orifices.  One microphone 
was mounted flush with the model surface and the other mounted 
internally to record model vibrations. 

The microphone model was tested in the freestream of the 
AEDC-VKF Tunnels A and D and inside the long shroud in Tunnel 
A. The microphone model locations inside the long shroud 
(Fig. III-3) were similar to the 3.0-in.-diam transition model 
locations, and the shroud model was repositioned with changes 
in free-stream Mach number to prevent the shroud leading-edge 
generated shock wave from impinging on the model surface. 

3.2 MICROPHONE 

The microphone instrumentation employed to measure the 
radiated aerodynamic noise consisted of two Bruel and Kjar® 
l/4-in.-diam condenser microphones (Model No. 4136) used in 
conjunction with a Brüel and Kjar root-mean-square (RMS) 
voltmeter and an Ampex®(Model No. FR1300) analog tape re- 
corder.  The lower and upper limit of the microphone dynamic 
range was from 70 and 180 db, respectively, and the frequency 
range was from 0 to 100 kHz.  The RMS pressure fluctuations 
were read directly from the RMS voltmeter during test opera- 
tion.  The microphone output was also recorded on the Ampex 
data tape system and later checked for verification of the 
on-line RMS values. 

Microphone interference from model vibration was mini- 
mized by providing a nylon insert around the surface micro- 
phone, using insulator strips on the mounting plate, and filling 
the microphone cable cavity with cotton.  Model vibrations 
as determined from the internally mounted microphone were 
found to be negligible. 
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3.3 LONG SHROUD INNER WALL BOUNDARY-LAYER CHARACTERISTICS AND 
PRESSURE DISTRIBUTIONS 

A pitot rake having fifteen probes was used to determine 
the long shroud inner-wall boundary-layer characteristics at 
the microphone model leading-edge location (Fig. III-4c).  At 
J^JO = 3.0 and 5.0, the boundary layer (no trip) was fully turbu- 
lent at the rake location for Re/in. >: 0.15 x 10°, as shown in 
Figs. III-4a and b and III-5b and c. For J^, = 3.0 and Re/in. ■ 
0.05 x 10^, the boundary layer was laminar at the rake for the 
no-trip condition. When an equivalent length concept (xeq ) 
was used as outlined in Fig. III-4d, the experimentally no- 
trip, momentum thickness (6) data were in good agreement 
with the theoretical results, as shown in Fig. III-4b. 

The shroud inner-wall boundary-layer displacement and 
momentum thicknesses were evaluated using the following equa- 
tions: 

g,» 

8* = ■jhi&x-iy 

•-frfkb-rM-ty 
The local boundary-layer velocity (u) was determined 

using the rake probe total pressures and the shroud static 
pressure.  The static pressure (measured shroud static) and 
total temperature was assumed to remain constant through the 
boundary layer.  The local flow velocity (UL) outside the 
shroud boundary layer was calculated using T0 with the measured 
shroud static and the pitot pressure from the outermost probe 
on the rake which was outside the shroud boundary layer. 

Figure III-6 presents the measured pressure distributions 
inside the long shroud for M^ = 3 and 5 as determined from 
static pressure orifices located on the shroud inner surface 
near the shroud leading edge, from orifices on the 3.0-in.-diam 
hollow-cylinder transition model, and from orifices on the flat 
plate microphone model.  These data confirm that the shroud in- 
ternal flow was supersonic at all times.  A fairly good theoreti- 
cal estimate of the static pressure distribution inside the shroud 
was obtained assuming that a 1-deg, two-dimensional shroud lip 
shock existed. 
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3.4 LONG SHROUD TRANSITION RESULTS 

Typical surface pitot pressure traces from which transi- 
tion locations on the 3.0-in.-diam hollow cylinder were de- 
termined are presented in Figs. III-7 and III-8.  The pitot 
probe was remotely controlled, and a continuous pitot pressure 
trace was provided by an X-Y plotter.  In accordance with the 
previous discussions in Section III and Appendix I, the loca- 
tion of transition was defined as the peak in the pitot pres- 
sure trace. When the boundary-layer trip was placed on the 
shroud lip inner surface, the large decrease in the location 
of transition as a result of the increase in the radiated 
aerodynamic noise emanating from the shroud inner wall turbu- 
lent boundary layer is clearly seen in Fig. III-7.  The im- 
pingement location of the long shroud lip shock (xg) on the 
3.0-in.-diam hollow-cylinder model (Fig. III-7) was clearly 
visible on the probe pressure trace and was near the antici- 
pated station. 

In addition to the long shroud, a short shroud configu- 
ration was also tested.  The purpose of this configuration 
was to maintain laminar flow on the inner wall and attempt 
to shield some of the radiated aerodynamic noise from the 
walls of the 40-in. Tunnel A from the 3.0-in.-diam transi- 
tion model.  However, it was suspected that this short shroud 
configuration would not shield an appreciable amount of radi- 
ation since the radiated pressure fluctuations travel along 
incline rays similar to, but somewhat steeper than, Mach waves 
(see Ref. 6).  Again the leading-edge shock impingement (xs) 
was clearly visible on the probe pressure traces presented in 
Fig. III-8 and occurred on the 3.0-in.-diam model near the 
anticipated location. 

Figure III-9 presents the transition Reynolds number results 
obtained without the shroud configuration and with the short and 
long shroud configurations placed concentrically around the 3.0- 
in.-diam hollow-cylinder model for M^, = 3,4, and 5 and the allow- 
able Re/in. range.  These data were taken with and without the 
boundary-layer trip on the long shroud inner surface at ^ = 3 
and 5.  However, the trip was not effective at M^ = 5 which was 
not unexpected. 

All of the transition results obtained in this investi- 
gation are tabulated in Table III-l. 
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TABLE III-1 
LONG AND SHORT SHROUD TRANSITION RESULTS 

AEDC-TR-67-236 

M 
00 

Config. 
po' 
psia 

To. 
°R 

Re/in. 
x   10-6 

v ** 

in. 
Ret 

x   10-6 in. 
e, 
deg 

2,98 Long 16.6 563 0.203 12.7 2.58 0.0021 6 
2.99 Shroud 20.4 562 0.252 10.2 2.57 
2.99 24.7 562 0.304 8.0 2.43 
2.99 32.7 563 0.401 5.5 2.21 
2.99 , 28.1 562 0.345 6.6 2.28 
2.99 18.2 561 0.225 11.5 2.59 
2.98 14.2 562 0.176 14.5 2.55 
2.98 15.3 561 0.191 13.5 2.58 
4.02 28.4 566 0.202 9.5 1.92 
4.00 21.3 564 0.154 14.0 2.16 
3.99 17.7 564 0.128 *  -- 
4.02 34.0 564 0.243 8.0 1.94 
4.02 41.1 564 0.293 6.7 1.96 
4.02 56.3 564 0.403 5.2 2.09 
4.02 64.5 562 0.463 4.7 2.17 
4.02 73.4 563 0.525 4.4 2.31 

5.04 50.9 601 0.201 12.5 2.51 
5.04 82.0 638 0.296 9.0 2.66 

-5.06 110.1 639 0.392 7.2 2.82 
5.06 136.5 645 0.480 6.2 2.98 
5.05 150.0 644 0.531 6.0 3.19 
5.04 66.6 641 0.238 10.5 2.50 
5.04 39.2 606 0.153 16.1 2.46 
5.04 39.1 604 0.153 15.5 2.37 0.0013 12 
5.04 50.6 603 0.199 11.5 2.29 

I J 5.04 82.0 638 0.296 8.2 2.43 
5.06 

1 ' 136.9 638 0.490 5.7 2.79 
5.04 Long 39.4 603 0.155 16.0 2.48 0.0021 6 
5.04 Shroud 50.8 601 0.200 12.0 2.40 
5.04 with 82.2 639 0.296 9.0 2.66 
2.98 Trip 14.3 564 0.176 9.0 1.58 
2.98 16.6 563 0.205 6.6 1.35 
2.99 20.5 565 0.250 5.5 1.37 
2.99 26.1 563 0.324 5.3 1.72 
2.99 32.8 564 0.39 4.8 1.87 

1 ' ' 

3.0 Short 0.0021 6 

4.02 Shroud 28.2 564 0.202 *  —— 

4.02 34.4 564 0.245 *  __ 
4.02 41.3 562 0.296 11.2 3.31 
4.02 56.4 565 0.401 9.5 3.81 
4.02 64.7 569 0.457 8.7 3.98 
4.02 73.5 565 0.524 8.0 4.19 
5.05 150.6 643 0.532 10.8 5.75 
5.06 136.9 643 0.484 11.1 5.37 
5.06 109.9 643 0.389 11.7 4.55 
5.05 

1 

82.4 645 0.292 14.0 4.09 
' 

** 
Shroud Lip Shock Wave Interference 

xt Measured on 3.0-in.-diam Hollow-Cylinder Transition Model 
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APPENDIX IV 
TRANSITION REYNOLDS NUMBER RESULTS 

FROM THE AEDC-VKF TUNNEL D 

4.1 AEDC-VKF TUNNEL D 

The AEDC-VKF Tunnel D is shown in Fig. IV-1.  Additional 
information on the tunnel can be found in Section II. 

4.2 TRANSITION REYNOLDS NUMBERS 

The basic transition Reynolds number data obtained on the 
3.0-in.-diam hollow-cylinder model in Tunnel D for H» ■ 3 are 
plotted in Figs. IV-2 and IV-3 for several leading-edge ge- 
ometries and two sizes of surface pitot probe tips.  The loca- 
tion of transition was determined from continuous surface pitot 
pressure traces recorded on a X-Y plotter and was defined as 
the peak location in the pitot pressure trace (see Section III 
and Appendix I).  These data show that there was no discernible 
effect on transition due to probe tip size and also no effect 
of the leading-edge internal bevel angle.  The transition 
Reynolds number data obtained by Potter and Vhitfield (Ref. 17) 
in Tunnel D using the same model are presented in Fig. IV-3 
for J^o ■ 3, 4, and 5.  Good agreement is seen to exist between 
the present results and the results of Ref. 17 at ^ = 3, 
5 = 0.003 in.  The zero bluntness transition Reynolds number 
from Tunnel D used in the transition correlation presented in 
Section V were taken from Fig. IV-3.  Transition Reynolds number 
results obtained in this investigation in Tunnel D are tabulated 
in Table IV-1. 

The effectiveness of the serrated fiber glass boundary- 
layer trip that was used in the Tunnel A long shroud experiments 
(Section IV and Appendix III) was determined from tests in Tun- 
nel D.  These results are shown in Fig. IV-4 for H» = 3. 

It is of interest to note that when the boundary-layer 
trip was located on the inner wall of the 3.0-in.-diam model 
near the leading edge the turbulent boundary layer with its 
inherent radiated noise that was presumably present on the 
inner wall did not affect the boundary-layer transition on the 
model outer surface, as shown by the Re-t data in Fig. IV-2. 
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Probe Tip Details 

All Dimensions in Inches 

Re+ 

b, in. aLE, aeg Remarks 

0 0.0021 6 Probe A 
a 0.0021 6 Probe B 
& 0.0023 12 Probe A 
a 0.0036 6 Probe A 
u 0.0036 6 Probe A* 

6x10° 
5 

4 

3 

Boundary-Layer Trip on Internal Bevel Angle 

MM 

1 

i i i 111 in ii JTTTT] T I       '      I      ' 

b, in. 

0.0036 
0.0022 

Extrapolated 

■^ i ■ ■ ■ ■ 11 ■ ■ ■ i   i i i ■ i   ■  i ■ i ■ i ■ i 

0.08 0.1 0.2      0.3   0.4      0.6 0.8 1.0     1.5 x 106 

Re/in. 

Fig. IV-2   Basic Transition Reynolds Number Data from the AEDC-VKF Tunnel D 

for Mo,,  =  3.0 with Variable b, ÖLE, and Re/in. 
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flLE- «leg Source 

Th 
AE 

•      6 Ref. 17 
o     6        Present Investigation 
a    12 Present Investigation 
0    12        Present Investigation 

Flagged Symbols Represent Extrapolated Data; 
Double Flagged Data Estimated from Fig. 27, 
Ref. 17 

1 V i   i   i   i  

Mo,-5.0 

7 x10s 

6 
fei  '   l   iii—|   i   |   i   |   i   i   i   i   i   i   i   i   i j 

Re/in. x 1(T 

JT i   ■   i   .   i    i 

M<D -4.0 

1  i  ■  i v 
Re/in. x 10"6- 

8      9 lOxlO"3 

Mo, "3.0 

Fig. IV-3   Basic Transition Reynolds Number Data from the AEDC-VKF Tunnel D for 

M^ = 3, 4, and 5 with Variable b, 0LE, and Re/in. 
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b =0.0036 

9LE ■ 6 deg 
View A 

Interchangeable 
Nose 

3.0-in.-diam Hollow-Cylinder 
Transition Model 

Serrated Fiber Glass 
Tape Trip 

Model Geometry 

Trip on Outside Surface 
No Trip 
Trip on Inside Surface 

0.7 xlO6 

Fig. IV-4   Effectiveness of Serrated Fiber Glass Tape Boundary-Layer Trip at MK =  3.0 
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TABLE IV-1 
AEDC-VKF TUNNEL D TRANSITION REYNOLDS NUMBER DATA, 

3.0-IN.-DIAM HOLLOW CYLINDER 

Hu Po- To- Re/1n. xf Ret b, 8LE, Remarks 
psia °R x   10-6 

in. x   10-6 In. deg 

2.98 7.3 536 0.097 14.0 1.36 0.0036 6 Probe A 
2.99 11.3 539 0.148 11.3 1.67 /0.015 x   \ 

W>.032   InJ 2.99 14.4 540 0.188 10.0 1.88 
3.00 23.8 539 0.311 B.3 2.58 
3.00 30.7 537 0.402 7.0 2.81 
3.00 37.8 533 0.501 6.3 3.16 
3.00 44.5 528 0.598 5.5 3.29 
2.98 7.3 532 0.097 14.0 1.36 
2.99 11.4 535 0.151 11.0 1.66 i 

3.00 14.9 537 0.195 10.0 1.95 
3.00 22.8 536 0.300 8.25 2.47 
3.00 29.9 534 0.394 7.0 2.76 
3.00 37.8 526 0.511 6.1 3.12 
3.00 44.9 518 0.620 5.5 3.41 
2.98 7.6 529 0.102 11.7 1.19 0.023 12 Probe A 
3.00 23.0 533 0.305 6.8 2.07 1 1 1 
3.00 29.9 534 0.396 6.1 2.41 
3.00 37.9 530 0.507 5.4 2.74 1 1 1 
3.00 44.9 527 0.605 4.9 2.96 T T T 

2.98 7.5 523 0.103 13.2 1.36 0.036 6 *• 
2.99 11.5 527 0.155 11.2 1.74 Probe A 
2.99 15.0 529 0.201 9.8 1.97 
3.00 22.8 529 0.305 8.0 2.44 
3.00 31.1 523 0.423 6.a 2.87 
3.00 37.9 516 0.526 6.1 3.21 
3.00 45.0 510 0.636 5.4 3.44 
2.98 7.6 523 0.105 11.2 1.18 0.0021 6 Probe A 
2.98 11.6 517 0.162 9.4 1.52 
2.99 15.1 512 0.213 8.3 1.77 
3.00 22.9 511 0.323 6.6 2.13 
3.00 30.0 515 0.419 5.9 2.47 
3.00 38.0 515 0.530 5.3 2.81 
3.00 44.9 514 0.626 4.9 3.07 
2.98 7.7 513 0.109 11.2 1.22 
2.98 11.6 511 0.16 5 9.8 1.62 
2.99 15.1 519 0.209 B.5 1.78 
3.00 23.0 527 0.309 7.0 2.16 
3.00 30.0 528 0.403 6.0 2.42 
3.00 38.0 526 0.513 5.3 2.72 
3.00 45.0 520 0.620 4.7 2.91 
2.98 11.7 511 0.165 9.6 1.58 0.0021 6 Probe B 
2.99 15.1 517 0.211 8.5 1.79 /0.007  x      \ 

\P.0037  inJ 3.00 23.0 529 0.308 7.0 2.16 
3.00 30.0 529 0.401 6.0 2.41 1 3.00 38.1 526 0.514 5.2 2.67 i 

3.00 45.2 515 0.630 '  4.7 2.96 

3.0 - - »530 0.1 
0.2 

- 1.10 
1.43 

J — Extrapolated 
Values of Ret 

0.3 
0.4 

1.70 
1.90 

fron Flg.   IV-3 
1 

0.5 2.09 1 v 0.6 2.24 f 

4.0 »540 0.1 
0.2 

1.12 
1.51 

Extrapolated 
Values of Re* 

0.3 
0.4 

1.76 
1.96 

from Fig.   IV-3 

0.5 2.15 
0.6 2.31 

5.0 0.1 1.40 

1 0.2 2.06 
0.3 
0.4 

2.65 
3.10 ■ 

**Boundary-Layer Trip Located on Inside Bevel Angle 1/8-ln. 
from Hollow-Cylinder Leading Edge. 
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APPENDIX V 
DISPLACEMENT THICKNESS CORRELATION AND 
TURBULENT SKIN-FRICTION COEFFICIENTS 

5.1 DISPLACEMENT THICKNESS CORRELATION 

When the experimental tunnel wall boundary-layer dis- 
placement thickness (6*) values used in the transition cor- 
relation (Section V) were not available from the literature, 
Fig. V-l was used to obtain an approximate 6* value.  The 
correlation presented in Fig. V-l was developed by Maxwell 
and Jacocks in Ref. 22 by arranging the equations of Tucker 
(Ref. 37) in a dimensionless form: 

8* = 
K(XE) 6/7 

and t      , i/7 
K = 0.01311 

where  aQ Speed of sound at stagnation conditions, ft/sec 

XJJ Longitudinal distance from tunnel throat to nozzle 
aerodynamic exit plane, ft 

6*  Boundary-layer displacement thickness, ft 

M-o Coefficient of viscosity at stagnation conditions 
lb-sec/ft2 

p0 Density at stagnation conditions, lb-sec^/ft4 

5.2 TURBULENT SKIN-FRICTION COEFFICIENT 

Theoretical skin-friction coefficients determined from 
Ref. 21 for an adiabatic, zero pressure gradient, compressible 
fluid are presented in Fig. V-2.  Experimental skin-friction 
coefficients obtained in this investigation from the AEDC-PWT-16S 
tunnel along with experimental values from other sources are also 
presented.  Good agreement between the experimental and theoret- 
ical values existed. 
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Facility Test Section Size Reference ir» in. 

!     0 AEDC-VKF (A) 40- by 40-in. 22 — 

!    A AEDC-PWT (SMT) 12- by 12-in. 22 — 
!   o AEDC-VKF (D) 12- by 12-in. 33 56 

■ -   '           »7 AEDC-PWT-16S 16- by 16-fft Present Investigation 839 
*   ■ AEDC-VKF (A) 40- by 40-in. Present Investigation 208 

' i-  < ■         »X JPL-20-in. SWT 18- by 20-in. 34 66 to 118 
CooledWalls  •   + JPL-21-in. HWT ~20-by2Hn. 34 159 

1     '° 
AEDC-VKF (E) 12- by 12-in. Unpublished VKF Data 

(Tunnel Side Wall) 
64 

1         •  0 AEDC-VKF (B) 50-in. Diameter 35 244 

20 

18 

16 

14- 

12 

10 

8 

6 

4- 

2 

0 

1 6 Computed at Aerodynamic Exit Plane (XE) 

* 5* Computed at Rake Location (XR) - £,. 

Theoretical Value 
(AdiabaticWall), 
Ref. 22  

J L. 

Data Fairing Used to 
Obtain 6* Values for, 
Use with Refs. 26 
and 28 Data 

5 6 

Mm 

10 

Fig. V-l   Flexible Plate Displacement Thickness Correlation for Moo  =   1>0 to 10 
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0.0004 h 

0.0003 

1 

M, 00 

0.2 
2.2 
3.0 
3.0 
3.0 
2.6 
3.7 
4.5 

V in. 
=530 
«350 

56 
238 
839 

Experimental Values 

Source Reference 

R. A. E. 8 ft x 8 ft Tunnel (Straight Wall) 
R. A. E. 8 ft x 8 ft Tunnel (Straight Wall) 
AEDC-VKF 12 in. x 12 in. Tunnel (D) (Straight Wall) 
AEDC-VKF 40 in. x 40 in. Tunnel (A) (Straight Wall) 
AEDC-PWT 16 ft x 16 ft Supersonic Tunnel (Straight Wall) 
Flat Plate 
Flat Plate 
Flat Plate 

i 

36 
36 
33 
32 

Present Study 
31 
31 
31 

m—i i i i " 1—"—r 
—Theoretical Values, Ref. 21 

_ ^experimental 

J i '■'■'■  _L i   I  ■  I i I    I   I  I I 

> 
m 
o 
n 

■ 

U 

8   10 20 

Re£. 

30    40        60    80   100 200      300   400 xlO6 

Fig. V-2   Adiabatic, Mean Turbulent Skin-Friction Coefficients as a Function of Mach 

Number and Length Reynolds Number 
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